Dateien nach "includes/PHPExcel/Classes/PHPExcel/Shared/trend" hochladen
This commit is contained in:
parent
c5106cd2bc
commit
8e3a1aa340
|
@ -0,0 +1,432 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Indicator flag for a calculation error
|
||||||
|
*
|
||||||
|
* @var boolean
|
||||||
|
**/
|
||||||
|
protected $_error = False;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'undetermined';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Number of entries in the sets of x- and y-value arrays
|
||||||
|
*
|
||||||
|
* @var int
|
||||||
|
**/
|
||||||
|
protected $_valueCount = 0;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* X-value dataseries of values
|
||||||
|
*
|
||||||
|
* @var float[]
|
||||||
|
**/
|
||||||
|
protected $_xValues = array();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Y-value dataseries of values
|
||||||
|
*
|
||||||
|
* @var float[]
|
||||||
|
**/
|
||||||
|
protected $_yValues = array();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Flag indicating whether values should be adjusted to Y=0
|
||||||
|
*
|
||||||
|
* @var boolean
|
||||||
|
**/
|
||||||
|
protected $_adjustToZero = False;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Y-value series of best-fit values
|
||||||
|
*
|
||||||
|
* @var float[]
|
||||||
|
**/
|
||||||
|
protected $_yBestFitValues = array();
|
||||||
|
|
||||||
|
protected $_goodnessOfFit = 1;
|
||||||
|
|
||||||
|
protected $_stdevOfResiduals = 0;
|
||||||
|
|
||||||
|
protected $_covariance = 0;
|
||||||
|
|
||||||
|
protected $_correlation = 0;
|
||||||
|
|
||||||
|
protected $_SSRegression = 0;
|
||||||
|
|
||||||
|
protected $_SSResiduals = 0;
|
||||||
|
|
||||||
|
protected $_DFResiduals = 0;
|
||||||
|
|
||||||
|
protected $_F = 0;
|
||||||
|
|
||||||
|
protected $_slope = 0;
|
||||||
|
|
||||||
|
protected $_slopeSE = 0;
|
||||||
|
|
||||||
|
protected $_intersect = 0;
|
||||||
|
|
||||||
|
protected $_intersectSE = 0;
|
||||||
|
|
||||||
|
protected $_Xoffset = 0;
|
||||||
|
|
||||||
|
protected $_Yoffset = 0;
|
||||||
|
|
||||||
|
|
||||||
|
public function getError() {
|
||||||
|
return $this->_error;
|
||||||
|
} // function getBestFitType()
|
||||||
|
|
||||||
|
|
||||||
|
public function getBestFitType() {
|
||||||
|
return $this->_bestFitType;
|
||||||
|
} // function getBestFitType()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
*/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
return False;
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
*/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return False;
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the original set of X-Values
|
||||||
|
*
|
||||||
|
* @return float[] X-Values
|
||||||
|
*/
|
||||||
|
public function getXValues() {
|
||||||
|
return $this->_xValues;
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
return False;
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Slope of the line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function getSlope($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_slope,$dp);
|
||||||
|
}
|
||||||
|
return $this->_slope;
|
||||||
|
} // function getSlope()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the standard error of the Slope
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function getSlopeSE($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_slopeSE,$dp);
|
||||||
|
}
|
||||||
|
return $this->_slopeSE;
|
||||||
|
} // function getSlopeSE()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Value of X where it intersects Y = 0
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function getIntersect($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_intersect,$dp);
|
||||||
|
}
|
||||||
|
return $this->_intersect;
|
||||||
|
} // function getIntersect()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the standard error of the Intersect
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
*/
|
||||||
|
public function getIntersectSE($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_intersectSE,$dp);
|
||||||
|
}
|
||||||
|
return $this->_intersectSE;
|
||||||
|
} // function getIntersectSE()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the goodness of fit for this regression
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to return
|
||||||
|
* @return float
|
||||||
|
*/
|
||||||
|
public function getGoodnessOfFit($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_goodnessOfFit,$dp);
|
||||||
|
}
|
||||||
|
return $this->_goodnessOfFit;
|
||||||
|
} // function getGoodnessOfFit()
|
||||||
|
|
||||||
|
|
||||||
|
public function getGoodnessOfFitPercent($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_goodnessOfFit * 100,$dp);
|
||||||
|
}
|
||||||
|
return $this->_goodnessOfFit * 100;
|
||||||
|
} // function getGoodnessOfFitPercent()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the standard deviation of the residuals for this regression
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to return
|
||||||
|
* @return float
|
||||||
|
*/
|
||||||
|
public function getStdevOfResiduals($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_stdevOfResiduals,$dp);
|
||||||
|
}
|
||||||
|
return $this->_stdevOfResiduals;
|
||||||
|
} // function getStdevOfResiduals()
|
||||||
|
|
||||||
|
|
||||||
|
public function getSSRegression($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_SSRegression,$dp);
|
||||||
|
}
|
||||||
|
return $this->_SSRegression;
|
||||||
|
} // function getSSRegression()
|
||||||
|
|
||||||
|
|
||||||
|
public function getSSResiduals($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_SSResiduals,$dp);
|
||||||
|
}
|
||||||
|
return $this->_SSResiduals;
|
||||||
|
} // function getSSResiduals()
|
||||||
|
|
||||||
|
|
||||||
|
public function getDFResiduals($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_DFResiduals,$dp);
|
||||||
|
}
|
||||||
|
return $this->_DFResiduals;
|
||||||
|
} // function getDFResiduals()
|
||||||
|
|
||||||
|
|
||||||
|
public function getF($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_F,$dp);
|
||||||
|
}
|
||||||
|
return $this->_F;
|
||||||
|
} // function getF()
|
||||||
|
|
||||||
|
|
||||||
|
public function getCovariance($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_covariance,$dp);
|
||||||
|
}
|
||||||
|
return $this->_covariance;
|
||||||
|
} // function getCovariance()
|
||||||
|
|
||||||
|
|
||||||
|
public function getCorrelation($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round($this->_correlation,$dp);
|
||||||
|
}
|
||||||
|
return $this->_correlation;
|
||||||
|
} // function getCorrelation()
|
||||||
|
|
||||||
|
|
||||||
|
public function getYBestFitValues() {
|
||||||
|
return $this->_yBestFitValues;
|
||||||
|
} // function getYBestFitValues()
|
||||||
|
|
||||||
|
|
||||||
|
protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) {
|
||||||
|
$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
|
||||||
|
foreach($this->_xValues as $xKey => $xValue) {
|
||||||
|
$bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
||||||
|
|
||||||
|
$SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY);
|
||||||
|
if ($const) {
|
||||||
|
$SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY);
|
||||||
|
} else {
|
||||||
|
$SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey];
|
||||||
|
}
|
||||||
|
$SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY);
|
||||||
|
if ($const) {
|
||||||
|
$SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX);
|
||||||
|
} else {
|
||||||
|
$SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
$this->_SSResiduals = $SSres;
|
||||||
|
$this->_DFResiduals = $this->_valueCount - 1 - $const;
|
||||||
|
|
||||||
|
if ($this->_DFResiduals == 0.0) {
|
||||||
|
$this->_stdevOfResiduals = 0.0;
|
||||||
|
} else {
|
||||||
|
$this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals);
|
||||||
|
}
|
||||||
|
if (($SStot == 0.0) || ($SSres == $SStot)) {
|
||||||
|
$this->_goodnessOfFit = 1;
|
||||||
|
} else {
|
||||||
|
$this->_goodnessOfFit = 1 - ($SSres / $SStot);
|
||||||
|
}
|
||||||
|
|
||||||
|
$this->_SSRegression = $this->_goodnessOfFit * $SStot;
|
||||||
|
$this->_covariance = $SScov / $this->_valueCount;
|
||||||
|
$this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2)));
|
||||||
|
$this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex);
|
||||||
|
$this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2));
|
||||||
|
if ($this->_SSResiduals != 0.0) {
|
||||||
|
if ($this->_DFResiduals == 0.0) {
|
||||||
|
$this->_F = 0.0;
|
||||||
|
} else {
|
||||||
|
$this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if ($this->_DFResiduals == 0.0) {
|
||||||
|
$this->_F = 0.0;
|
||||||
|
} else {
|
||||||
|
$this->_F = $this->_SSRegression / $this->_DFResiduals;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // function _calculateGoodnessOfFit()
|
||||||
|
|
||||||
|
|
||||||
|
protected function _leastSquareFit($yValues, $xValues, $const) {
|
||||||
|
// calculate sums
|
||||||
|
$x_sum = array_sum($xValues);
|
||||||
|
$y_sum = array_sum($yValues);
|
||||||
|
$meanX = $x_sum / $this->_valueCount;
|
||||||
|
$meanY = $y_sum / $this->_valueCount;
|
||||||
|
$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
|
||||||
|
for($i = 0; $i < $this->_valueCount; ++$i) {
|
||||||
|
$xy_sum += $xValues[$i] * $yValues[$i];
|
||||||
|
$xx_sum += $xValues[$i] * $xValues[$i];
|
||||||
|
$yy_sum += $yValues[$i] * $yValues[$i];
|
||||||
|
|
||||||
|
if ($const) {
|
||||||
|
$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
|
||||||
|
$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
|
||||||
|
} else {
|
||||||
|
$mBase += $xValues[$i] * $yValues[$i];
|
||||||
|
$mDivisor += $xValues[$i] * $xValues[$i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate slope
|
||||||
|
// $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum));
|
||||||
|
$this->_slope = $mBase / $mDivisor;
|
||||||
|
|
||||||
|
// calculate intersect
|
||||||
|
// $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount;
|
||||||
|
if ($const) {
|
||||||
|
$this->_intersect = $meanY - ($this->_slope * $meanX);
|
||||||
|
} else {
|
||||||
|
$this->_intersect = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const);
|
||||||
|
} // function _leastSquareFit()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($yValues, $xValues=array(), $const=True) {
|
||||||
|
// Calculate number of points
|
||||||
|
$nY = count($yValues);
|
||||||
|
$nX = count($xValues);
|
||||||
|
|
||||||
|
// Define X Values if necessary
|
||||||
|
if ($nX == 0) {
|
||||||
|
$xValues = range(1,$nY);
|
||||||
|
$nX = $nY;
|
||||||
|
} elseif ($nY != $nX) {
|
||||||
|
// Ensure both arrays of points are the same size
|
||||||
|
$this->_error = True;
|
||||||
|
return False;
|
||||||
|
}
|
||||||
|
|
||||||
|
$this->_valueCount = $nY;
|
||||||
|
$this->_xValues = $xValues;
|
||||||
|
$this->_yValues = $yValues;
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class bestFit
|
|
@ -0,0 +1,148 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Exponential_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Exponential_Best_Fit extends PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
* (Name of this trend class)
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'exponential';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
return $this->getIntersect() * pow($this->getSlope(),($xValue - $this->_Xoffset));
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return log(($yValue + $this->_Yoffset) / $this->getIntersect()) / log($this->getSlope());
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
$slope = $this->getSlope($dp);
|
||||||
|
$intersect = $this->getIntersect($dp);
|
||||||
|
|
||||||
|
return 'Y = '.$intersect.' * '.$slope.'^X';
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Slope of the line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getSlope($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round(exp($this->_slope),$dp);
|
||||||
|
}
|
||||||
|
return exp($this->_slope);
|
||||||
|
} // function getSlope()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Value of X where it intersects Y = 0
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getIntersect($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round(exp($this->_intersect),$dp);
|
||||||
|
}
|
||||||
|
return exp($this->_intersect);
|
||||||
|
} // function getIntersect()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
private function _exponential_regression($yValues, $xValues, $const) {
|
||||||
|
foreach($yValues as &$value) {
|
||||||
|
if ($value < 0.0) {
|
||||||
|
$value = 0 - log(abs($value));
|
||||||
|
} elseif ($value > 0.0) {
|
||||||
|
$value = log($value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
unset($value);
|
||||||
|
|
||||||
|
$this->_leastSquareFit($yValues, $xValues, $const);
|
||||||
|
} // function _exponential_regression()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($yValues, $xValues=array(), $const=True) {
|
||||||
|
if (parent::__construct($yValues, $xValues) !== False) {
|
||||||
|
$this->_exponential_regression($yValues, $xValues, $const);
|
||||||
|
}
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class exponentialBestFit
|
|
@ -0,0 +1,111 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Linear_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Linear_Best_Fit extends PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
* (Name of this trend class)
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'linear';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
return $this->getIntersect() + $this->getSlope() * $xValue;
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
$slope = $this->getSlope($dp);
|
||||||
|
$intersect = $this->getIntersect($dp);
|
||||||
|
|
||||||
|
return 'Y = '.$intersect.' + '.$slope.' * X';
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
private function _linear_regression($yValues, $xValues, $const) {
|
||||||
|
$this->_leastSquareFit($yValues, $xValues,$const);
|
||||||
|
} // function _linear_regression()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($yValues, $xValues=array(), $const=True) {
|
||||||
|
if (parent::__construct($yValues, $xValues) !== False) {
|
||||||
|
$this->_linear_regression($yValues, $xValues, $const);
|
||||||
|
}
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class linearBestFit
|
|
@ -0,0 +1,120 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Logarithmic_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Logarithmic_Best_Fit extends PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
* (Name of this trend class)
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'logarithmic';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
return $this->getIntersect() + $this->getSlope() * log($xValue - $this->_Xoffset);
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return exp(($yValue - $this->getIntersect()) / $this->getSlope());
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
$slope = $this->getSlope($dp);
|
||||||
|
$intersect = $this->getIntersect($dp);
|
||||||
|
|
||||||
|
return 'Y = '.$intersect.' + '.$slope.' * log(X)';
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
private function _logarithmic_regression($yValues, $xValues, $const) {
|
||||||
|
foreach($xValues as &$value) {
|
||||||
|
if ($value < 0.0) {
|
||||||
|
$value = 0 - log(abs($value));
|
||||||
|
} elseif ($value > 0.0) {
|
||||||
|
$value = log($value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
unset($value);
|
||||||
|
|
||||||
|
$this->_leastSquareFit($yValues, $xValues, $const);
|
||||||
|
} // function _logarithmic_regression()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($yValues, $xValues=array(), $const=True) {
|
||||||
|
if (parent::__construct($yValues, $xValues) !== False) {
|
||||||
|
$this->_logarithmic_regression($yValues, $xValues, $const);
|
||||||
|
}
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class logarithmicBestFit
|
|
@ -0,0 +1,224 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Polynomial_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
* (Name of this trend class)
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'polynomial';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Polynomial order
|
||||||
|
*
|
||||||
|
* @protected
|
||||||
|
* @var int
|
||||||
|
**/
|
||||||
|
protected $_order = 0;
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the order of this polynomial
|
||||||
|
*
|
||||||
|
* @return int
|
||||||
|
**/
|
||||||
|
public function getOrder() {
|
||||||
|
return $this->_order;
|
||||||
|
} // function getOrder()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
$retVal = $this->getIntersect();
|
||||||
|
$slope = $this->getSlope();
|
||||||
|
foreach($slope as $key => $value) {
|
||||||
|
if ($value != 0.0) {
|
||||||
|
$retVal += $value * pow($xValue, $key + 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return $retVal;
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
$slope = $this->getSlope($dp);
|
||||||
|
$intersect = $this->getIntersect($dp);
|
||||||
|
|
||||||
|
$equation = 'Y = '.$intersect;
|
||||||
|
foreach($slope as $key => $value) {
|
||||||
|
if ($value != 0.0) {
|
||||||
|
$equation .= ' + '.$value.' * X';
|
||||||
|
if ($key > 0) {
|
||||||
|
$equation .= '^'.($key + 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return $equation;
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Slope of the line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getSlope($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
$coefficients = array();
|
||||||
|
foreach($this->_slope as $coefficient) {
|
||||||
|
$coefficients[] = round($coefficient,$dp);
|
||||||
|
}
|
||||||
|
return $coefficients;
|
||||||
|
}
|
||||||
|
return $this->_slope;
|
||||||
|
} // function getSlope()
|
||||||
|
|
||||||
|
|
||||||
|
public function getCoefficients($dp=0) {
|
||||||
|
return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp));
|
||||||
|
} // function getCoefficients()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param int $order Order of Polynomial for this regression
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
private function _polynomial_regression($order, $yValues, $xValues, $const) {
|
||||||
|
// calculate sums
|
||||||
|
$x_sum = array_sum($xValues);
|
||||||
|
$y_sum = array_sum($yValues);
|
||||||
|
$xx_sum = $xy_sum = 0;
|
||||||
|
for($i = 0; $i < $this->_valueCount; ++$i) {
|
||||||
|
$xy_sum += $xValues[$i] * $yValues[$i];
|
||||||
|
$xx_sum += $xValues[$i] * $xValues[$i];
|
||||||
|
$yy_sum += $yValues[$i] * $yValues[$i];
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
* This routine uses logic from the PHP port of polyfit version 0.1
|
||||||
|
* written by Michael Bommarito and Paul Meagher
|
||||||
|
*
|
||||||
|
* The function fits a polynomial function of order $order through
|
||||||
|
* a series of x-y data points using least squares.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
for ($i = 0; $i < $this->_valueCount; ++$i) {
|
||||||
|
for ($j = 0; $j <= $order; ++$j) {
|
||||||
|
$A[$i][$j] = pow($xValues[$i], $j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for ($i=0; $i < $this->_valueCount; ++$i) {
|
||||||
|
$B[$i] = array($yValues[$i]);
|
||||||
|
}
|
||||||
|
$matrixA = new Matrix($A);
|
||||||
|
$matrixB = new Matrix($B);
|
||||||
|
$C = $matrixA->solve($matrixB);
|
||||||
|
|
||||||
|
$coefficients = array();
|
||||||
|
for($i = 0; $i < $C->m; ++$i) {
|
||||||
|
$r = $C->get($i, 0);
|
||||||
|
if (abs($r) <= pow(10, -9)) {
|
||||||
|
$r = 0;
|
||||||
|
}
|
||||||
|
$coefficients[] = $r;
|
||||||
|
}
|
||||||
|
|
||||||
|
$this->_intersect = array_shift($coefficients);
|
||||||
|
$this->_slope = $coefficients;
|
||||||
|
|
||||||
|
$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum);
|
||||||
|
foreach($this->_xValues as $xKey => $xValue) {
|
||||||
|
$this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
||||||
|
}
|
||||||
|
} // function _polynomial_regression()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param int $order Order of Polynomial for this regression
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($order, $yValues, $xValues=array(), $const=True) {
|
||||||
|
if (parent::__construct($yValues, $xValues) !== False) {
|
||||||
|
if ($order < $this->_valueCount) {
|
||||||
|
$this->_bestFitType .= '_'.$order;
|
||||||
|
$this->_order = $order;
|
||||||
|
$this->_polynomial_regression($order, $yValues, $xValues, $const);
|
||||||
|
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
||||||
|
$this->_error = True;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
$this->_error = True;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class polynomialBestFit
|
|
@ -0,0 +1,142 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_Power_Best_Fit
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class PHPExcel_Power_Best_Fit extends PHPExcel_Best_Fit
|
||||||
|
{
|
||||||
|
/**
|
||||||
|
* Algorithm type to use for best-fit
|
||||||
|
* (Name of this trend class)
|
||||||
|
*
|
||||||
|
* @var string
|
||||||
|
**/
|
||||||
|
protected $_bestFitType = 'power';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Y-Value for a specified value of X
|
||||||
|
*
|
||||||
|
* @param float $xValue X-Value
|
||||||
|
* @return float Y-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfYForX($xValue) {
|
||||||
|
return $this->getIntersect() * pow(($xValue - $this->_Xoffset),$this->getSlope());
|
||||||
|
} // function getValueOfYForX()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the X-Value for a specified value of Y
|
||||||
|
*
|
||||||
|
* @param float $yValue Y-Value
|
||||||
|
* @return float X-Value
|
||||||
|
**/
|
||||||
|
public function getValueOfXForY($yValue) {
|
||||||
|
return pow((($yValue + $this->_Yoffset) / $this->getIntersect()),(1 / $this->getSlope()));
|
||||||
|
} // function getValueOfXForY()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Equation of the best-fit line
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getEquation($dp=0) {
|
||||||
|
$slope = $this->getSlope($dp);
|
||||||
|
$intersect = $this->getIntersect($dp);
|
||||||
|
|
||||||
|
return 'Y = '.$intersect.' * X^'.$slope;
|
||||||
|
} // function getEquation()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return the Value of X where it intersects Y = 0
|
||||||
|
*
|
||||||
|
* @param int $dp Number of places of decimal precision to display
|
||||||
|
* @return string
|
||||||
|
**/
|
||||||
|
public function getIntersect($dp=0) {
|
||||||
|
if ($dp != 0) {
|
||||||
|
return round(exp($this->_intersect),$dp);
|
||||||
|
}
|
||||||
|
return exp($this->_intersect);
|
||||||
|
} // function getIntersect()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
private function _power_regression($yValues, $xValues, $const) {
|
||||||
|
foreach($xValues as &$value) {
|
||||||
|
if ($value < 0.0) {
|
||||||
|
$value = 0 - log(abs($value));
|
||||||
|
} elseif ($value > 0.0) {
|
||||||
|
$value = log($value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
unset($value);
|
||||||
|
foreach($yValues as &$value) {
|
||||||
|
if ($value < 0.0) {
|
||||||
|
$value = 0 - log(abs($value));
|
||||||
|
} elseif ($value > 0.0) {
|
||||||
|
$value = log($value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
unset($value);
|
||||||
|
|
||||||
|
$this->_leastSquareFit($yValues, $xValues, $const);
|
||||||
|
} // function _power_regression()
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
||||||
|
*
|
||||||
|
* @param float[] $yValues The set of Y-values for this regression
|
||||||
|
* @param float[] $xValues The set of X-values for this regression
|
||||||
|
* @param boolean $const
|
||||||
|
*/
|
||||||
|
function __construct($yValues, $xValues=array(), $const=True) {
|
||||||
|
if (parent::__construct($yValues, $xValues) !== False) {
|
||||||
|
$this->_power_regression($yValues, $xValues, $const);
|
||||||
|
}
|
||||||
|
} // function __construct()
|
||||||
|
|
||||||
|
} // class powerBestFit
|
|
@ -0,0 +1,156 @@
|
||||||
|
<?php
|
||||||
|
/**
|
||||||
|
* PHPExcel
|
||||||
|
*
|
||||||
|
* Copyright (c) 2006 - 2014 PHPExcel
|
||||||
|
*
|
||||||
|
* This library is free software; you can redistribute it and/or
|
||||||
|
* modify it under the terms of the GNU Lesser General Public
|
||||||
|
* License as published by the Free Software Foundation; either
|
||||||
|
* version 2.1 of the License, or (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This library is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
* Lesser General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU Lesser General Public
|
||||||
|
* License along with this library; if not, write to the Free Software
|
||||||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
||||||
|
* @version ##VERSION##, ##DATE##
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/linearBestFitClass.php';
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/logarithmicBestFitClass.php';
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/exponentialBestFitClass.php';
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/powerBestFitClass.php';
|
||||||
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/polynomialBestFitClass.php';
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* PHPExcel_trendClass
|
||||||
|
*
|
||||||
|
* @category PHPExcel
|
||||||
|
* @package PHPExcel_Shared_Trend
|
||||||
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
||||||
|
*/
|
||||||
|
class trendClass
|
||||||
|
{
|
||||||
|
const TREND_LINEAR = 'Linear';
|
||||||
|
const TREND_LOGARITHMIC = 'Logarithmic';
|
||||||
|
const TREND_EXPONENTIAL = 'Exponential';
|
||||||
|
const TREND_POWER = 'Power';
|
||||||
|
const TREND_POLYNOMIAL_2 = 'Polynomial_2';
|
||||||
|
const TREND_POLYNOMIAL_3 = 'Polynomial_3';
|
||||||
|
const TREND_POLYNOMIAL_4 = 'Polynomial_4';
|
||||||
|
const TREND_POLYNOMIAL_5 = 'Polynomial_5';
|
||||||
|
const TREND_POLYNOMIAL_6 = 'Polynomial_6';
|
||||||
|
const TREND_BEST_FIT = 'Bestfit';
|
||||||
|
const TREND_BEST_FIT_NO_POLY = 'Bestfit_no_Polynomials';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Names of the best-fit trend analysis methods
|
||||||
|
*
|
||||||
|
* @var string[]
|
||||||
|
**/
|
||||||
|
private static $_trendTypes = array( self::TREND_LINEAR,
|
||||||
|
self::TREND_LOGARITHMIC,
|
||||||
|
self::TREND_EXPONENTIAL,
|
||||||
|
self::TREND_POWER
|
||||||
|
);
|
||||||
|
/**
|
||||||
|
* Names of the best-fit trend polynomial orders
|
||||||
|
*
|
||||||
|
* @var string[]
|
||||||
|
**/
|
||||||
|
private static $_trendTypePolyOrders = array( self::TREND_POLYNOMIAL_2,
|
||||||
|
self::TREND_POLYNOMIAL_3,
|
||||||
|
self::TREND_POLYNOMIAL_4,
|
||||||
|
self::TREND_POLYNOMIAL_5,
|
||||||
|
self::TREND_POLYNOMIAL_6
|
||||||
|
);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Cached results for each method when trying to identify which provides the best fit
|
||||||
|
*
|
||||||
|
* @var PHPExcel_Best_Fit[]
|
||||||
|
**/
|
||||||
|
private static $_trendCache = array();
|
||||||
|
|
||||||
|
|
||||||
|
public static function calculate($trendType=self::TREND_BEST_FIT, $yValues, $xValues=array(), $const=True) {
|
||||||
|
// Calculate number of points in each dataset
|
||||||
|
$nY = count($yValues);
|
||||||
|
$nX = count($xValues);
|
||||||
|
|
||||||
|
// Define X Values if necessary
|
||||||
|
if ($nX == 0) {
|
||||||
|
$xValues = range(1,$nY);
|
||||||
|
$nX = $nY;
|
||||||
|
} elseif ($nY != $nX) {
|
||||||
|
// Ensure both arrays of points are the same size
|
||||||
|
trigger_error("trend(): Number of elements in coordinate arrays do not match.", E_USER_ERROR);
|
||||||
|
}
|
||||||
|
|
||||||
|
$key = md5($trendType.$const.serialize($yValues).serialize($xValues));
|
||||||
|
// Determine which trend method has been requested
|
||||||
|
switch ($trendType) {
|
||||||
|
// Instantiate and return the class for the requested trend method
|
||||||
|
case self::TREND_LINEAR :
|
||||||
|
case self::TREND_LOGARITHMIC :
|
||||||
|
case self::TREND_EXPONENTIAL :
|
||||||
|
case self::TREND_POWER :
|
||||||
|
if (!isset(self::$_trendCache[$key])) {
|
||||||
|
$className = 'PHPExcel_'.$trendType.'_Best_Fit';
|
||||||
|
self::$_trendCache[$key] = new $className($yValues,$xValues,$const);
|
||||||
|
}
|
||||||
|
return self::$_trendCache[$key];
|
||||||
|
break;
|
||||||
|
case self::TREND_POLYNOMIAL_2 :
|
||||||
|
case self::TREND_POLYNOMIAL_3 :
|
||||||
|
case self::TREND_POLYNOMIAL_4 :
|
||||||
|
case self::TREND_POLYNOMIAL_5 :
|
||||||
|
case self::TREND_POLYNOMIAL_6 :
|
||||||
|
if (!isset(self::$_trendCache[$key])) {
|
||||||
|
$order = substr($trendType,-1);
|
||||||
|
self::$_trendCache[$key] = new PHPExcel_Polynomial_Best_Fit($order,$yValues,$xValues,$const);
|
||||||
|
}
|
||||||
|
return self::$_trendCache[$key];
|
||||||
|
break;
|
||||||
|
case self::TREND_BEST_FIT :
|
||||||
|
case self::TREND_BEST_FIT_NO_POLY :
|
||||||
|
// If the request is to determine the best fit regression, then we test each trend line in turn
|
||||||
|
// Start by generating an instance of each available trend method
|
||||||
|
foreach(self::$_trendTypes as $trendMethod) {
|
||||||
|
$className = 'PHPExcel_'.$trendMethod.'BestFit';
|
||||||
|
$bestFit[$trendMethod] = new $className($yValues,$xValues,$const);
|
||||||
|
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]->getGoodnessOfFit();
|
||||||
|
}
|
||||||
|
if ($trendType != self::TREND_BEST_FIT_NO_POLY) {
|
||||||
|
foreach(self::$_trendTypePolyOrders as $trendMethod) {
|
||||||
|
$order = substr($trendMethod,-1);
|
||||||
|
$bestFit[$trendMethod] = new PHPExcel_Polynomial_Best_Fit($order,$yValues,$xValues,$const);
|
||||||
|
if ($bestFit[$trendMethod]->getError()) {
|
||||||
|
unset($bestFit[$trendMethod]);
|
||||||
|
} else {
|
||||||
|
$bestFitValue[$trendMethod] = $bestFit[$trendMethod]->getGoodnessOfFit();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Determine which of our trend lines is the best fit, and then we return the instance of that trend class
|
||||||
|
arsort($bestFitValue);
|
||||||
|
$bestFitType = key($bestFitValue);
|
||||||
|
return $bestFit[$bestFitType];
|
||||||
|
break;
|
||||||
|
default :
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} // function calculate()
|
||||||
|
|
||||||
|
} // class trendClass
|
Loading…
Reference in New Issue